Oxford Cambridge and RSA

GCE

Further Mathematics A

Y533/01: Mechanics
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by *
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question includes the instruction: In this question you must show detailed reasoning.
DR	

Subject-specific Marking Instructions for AS Level Further Mathematics A

a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded

B

Mark for a correct result or statement independent of Method marks.

E

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case, please escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

- When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
- When a value is not given in the paper accept any answer that agrees with the correct value to 3 s.f. unless the question specifically asks for another level of accuracy.
- Follow through should be used so that only one mark is lost for each distinct accuracy error.
g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
$\mathrm{h} \quad$ For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question		$\left.\begin{array}{l} \text { Answer } \\ \text { Initial (kinetic) energy }=\frac{1}{2} \times m \times 8.4^{2} \\ \text { Energy at } 0.8 \mathrm{rad}=\frac{1}{2} m v^{2}+m \times 9.8 \times 2.5(1-\cos 0.8) \\ =\text { Initial energy } \end{array}\right\} \begin{array}{r} v^{2}=55.698 \ldots \Rightarrow \text { speed is } 7.46 \mathrm{~m} \mathrm{~s}^{-1} \end{array}$	Marks B1 M1 A1 [3]	AOs 1.1a 1.1 1.1	Guidance	
1	(a)				$35.28 m$ Attempt to find $\mathrm{KE}+\mathrm{PE}$ at 0.8 rad (or 45.8°) and equate to initial kinetic energy (KE must use correct formula) $\mathrm{NB} \Delta h=0.7582 \ldots$ SC1 for use of constant acceleration without justification	m may be implied $\frac{1}{2} m v^{2}+7.4306 \ldots m$ Or subtract PE from initial KE (to give final KE) (Final KE is $27.849 \ldots m$)
1	(b)	$\begin{aligned} & \text { Minimum energy to reach top }=m \times 9.8 \times(2 \times 2.5) \\ & =49 m \\ & 49 m>35.28 m \text { so insufficient energy to reach top } \end{aligned}$	M1 A1 A1ft [3]	$\begin{gathered} \hline 1.1 \mathrm{a} \\ \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	Or attempt to find angle when $v=0$ $35.28 m=24.5 m(1-\cos \theta)$ $\left(+1 / 2 m(0)^{2}\right)$ Condone missing m $\theta=2.03 \text { rads or } 116^{\circ}$ Comparison between their numerical multiples of m (m could be missing) Allow $=$ and consistent ft conclusion	Or attempt to find h when $\begin{aligned} & v=0\left(h=\frac{35.28}{g}\right) \\ & h=3.6 \end{aligned}$ or comparison of their angle with 2π or 180° Or show that $h=3.6<5$ or show that $v^{2}=$ $-27.44<0$ (is not valid)

2	(a)	$\begin{aligned} & 3.6 \times 7.2=3.6 v_{A}+2.4 v_{B} \\ & v_{A}=v_{B} \\ & 4.32 \mathrm{~ms}^{-1} \end{aligned}$	M1 M1 A1 [3]	$\begin{gathered} 1.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$	Conservation of momentum soi May be -4.32 if the initial velocity is counted as negative.	(25.92)
2	(b)	$\pm 3.6 \times 4.32 \mp 3.6 \times 7.2$	M1	1.1a	Using their 4.32 from 2(a) provided c.o.m. used	Or -($2.4 \times 4.32)$
		$-10.4 \mathrm{Ns}^{\left(\text {or } \mathrm{kg} \mathrm{m} \mathrm{s}^{-1} \text {) }\right.}$	A1 [2]	1.1	Or 10.4 Ns towards B Must be opposite sign to the initial velocity.	Deduct final mark if correct direction not soi
2	(c)	$\pm\left(\frac{1}{2} \times 3.6 \times 7.2^{2}-\frac{1}{2} \times(3.6+2.4) \times 4.32^{2}\right)$	M1	1.1a	Using their 4.32 from 2(a) provided c.o.m. used Allow one slip in substitution other than sign error; must have 3 terms	$\begin{aligned} & 93.31 \ldots-(33.59 \ldots+ \\ & 22.39 \ldots) \end{aligned}$
		37.3 J	$\begin{aligned} & \mathbf{A 1} \\ & {[2]} \\ & \hline \end{aligned}$	1.1	Allow -37.3J	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 \& (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{60000}{10}-R=1500 \times 3.3 \\
\& R=1050 \\
\& \frac{60000}{v}=1050
\end{aligned}
\] \\
The greatest speed is \(57.1 \mathrm{~ms}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
[4]
\end{tabular} \& \[
\begin{aligned}
\& \hline 3.3 \\
\& \\
\& \hline 1.1 \\
\& 3.4 \\
\& 1.1
\end{aligned}
\] \& \[
\begin{aligned}
\& =4950 \\
\& \text { May be }-1050
\end{aligned}
\] \& \\
\hline 3 \& (b) \& \[
\begin{aligned}
\& \frac{60000}{10}-k \times 10=1500 \times 3.3 \\
\& k=105 \\
\& \frac{60000}{v}=105 v \\
\& v^{2}=571.4 \ldots \\
\& v=23.9 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& {[5]}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 3.3 \\
\& \\
\& \hline 1.1 \\
\& 3.4 \\
\& \\
\& 1.1 \\
\& 1.1
\end{aligned}
\] \& \begin{tabular}{l}
Or \(1050=10 k\) \\
Must be positive
\end{tabular} \& \\
\hline 3 \& (c) \& \begin{tabular}{l}
The constant resistance model does not seem to be very accurate \\
The refined (linear) model (is not perfect but) gives a much more accurate answer than the constant resistance model
\end{tabular} \& \begin{tabular}{l}
B1ft \\
B1ft
\end{tabular} \& 3.5 a

2.4 \& \begin{tabular}{l}
B1 for each of two correct statements about the models.

If commenting on the accuracy of (a), must emphasise that (a) is very inaccurate or at least quite inaccurate

Do not allow e.g.

- model (a) is not very effective

- Neither model is accurate

- (a) and (b) are not very accurate

Clear comparison between the accuracy of the two models (must emphasise that (b) is fairly accurate or considerably more accurate than (a)), or other suitable distinct second comment

 \&

Suitable comments for (a):

- is very inaccurate

- predicted speed is nearly three times the actual value

- constant resistance is not a suitable model

- both models underestimate the resistance (as top speed is lower than expected)

For the linear model (b)

- is fairly accurate (but probably underestimates the resistance at higher speeds)
\end{tabular}

\hline
\end{tabular}

4	(a)	$[\rho]=\mathrm{ML}^{-3}$	B1 [1]	3.3	If M, L and T not used B0, but do not penalise any further instances of non-standard notation as long as it is used consistently.	
4	(b)	$\begin{aligned} & {[p]=\mathrm{MLT}^{-2} \mathrm{~L}^{-2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}} \\ & \mathrm{LT}^{-1}=\mathrm{M}^{\alpha} \mathrm{L}^{-\alpha} \mathrm{T}^{-2 \alpha} \mathrm{M}^{\beta} \mathrm{L}^{-3 \beta} \mathrm{~L}^{\gamma} \\ & \\ & \\ & \mathrm{M}: \quad \alpha+\beta=0 \\ & \mathrm{~T}:-2 \alpha=-1 \\ & \alpha=\frac{1}{2}, \beta=-\frac{1}{2} \\ & \mathrm{~L}: \quad 1=-\alpha-3 \beta+\gamma \\ & \gamma=0 \quad \text { www } \end{aligned}$	B1 B1ft M1 M1 A1 M1 A1 [7]	2.1 3.3 3.4 3.4 1.1 3.4 1.1	If M, L and T not used B0, provided this has not been withheld in part (a). Award remaining marks where working is clear. $\operatorname{Or}\left(M L T^{-1} T^{-2}\right)^{\alpha}\left(M L^{-3}\right)^{\beta}(L)^{\gamma}$ ft their expressions for p and ρ here and in subsequent method marks provided M, L and T present with M and L appearing at least twice on the RHS Ignore use of k in the equation. Allow this mark as long as the equations for M and T are correct. SC2 for three correct values unsupported or SC 1 for correct values of α and β or for γ. These may not be combined with any other marks.	Do not allow any marks for using addition instead of multiplication

5	(a)		$\begin{aligned} & T_{2} \cos \theta=m_{2} g \\ & \\ & T_{2}=\frac{m_{2} \times 9.8}{0.8}=12.25 m_{2} \end{aligned}$	M1 A1 [2]	1.1a 1.1	Resolving T_{2} vertically and balancing forces on R Do not allow extra forces present Allow use of g, e.g. $\frac{5}{4}$ gm m_{2}	In this solution θ is the angle between $R P$ and $R A$ Sin may be seen instead if θ is measured horizontally. Do not allow incomplete expressions e.g. $\frac{m_{2} g}{\sin 53.13}$
5	(b)	(i)	$\begin{aligned} & T_{2} \cos \theta+m_{1} g=T_{1} \cos \theta \\ & T_{1}=T_{2}+\frac{9.8 m_{1}}{0.8}= \end{aligned}$	M1 A1 [2]	3.1b 2.1	Vertical forces on P; 3 terms including resolving of T_{1}; allow sign error AG Dividing by $\cos \theta(=0.8)$, substituting their T_{2} and rearranging Allow 12.25 instead of $\frac{49}{4}$	Or $T_{1} \cos \theta=m_{1} g+m_{2} g$ (equation for the system as a whole) At least one intermediate step must be seen
5	(b)	(ii)	$\begin{aligned} & T_{1} \sin \theta+T_{2} \sin \theta=m_{1} a \\ & 12.25\left(m_{1}+m_{2}\right) \times 0.6+12.25 m_{2} \times 0.6=m_{1} \times 0.6 \omega^{2} \\ & \omega^{2}=\frac{7.35 m_{1}+14.7 m_{2}}{0.6 m_{1}}=\frac{49\left(m_{1}+2 m_{2}\right)}{4 m_{1}} \end{aligned}$	M1 M1 A1 [3]	3.1b 1.1 2.1	NII horizontally for P; 3 terms including resolving of tensions; allow sign error Substituting for T_{1}, their $T_{2}, \sin \theta$ and α AG Must see an intermediate step	Could see a or $0.6 \omega^{2}$ or $\begin{aligned} & \frac{v^{2}}{0.6} \text { or } \omega^{2} r \text { or } \frac{v^{2}}{r} \\ & \sin \theta=0.6 \end{aligned}$ $\text { must be } a=0.6 \omega^{2}$
5	(c)		$\begin{aligned} & \text { E.g } m_{1} \gg m_{2} \Rightarrow \frac{2 m_{2}}{m_{1}} \approx 0 \text { or } \frac{49 m_{2}}{4 m_{1}} \approx 0 \\ & \omega \approx \sqrt{\frac{49 m}{4 m}}=3.5 \end{aligned}$	M1 A1 [2]	1.1 1.1	Allow argument such as if $m_{1} \gg m_{2}$ then $m_{1}+2 m_{2} \approx m_{1}$ AG $\quad m$ may be missing SC 1 for result following argument that m_{2} is negligible (by comparison with m_{1}) without justification, or using trial values of m_{1} and m_{2} with $m_{1} \gg m_{2}$.	Do not allow the assumption that $m_{2}=0$ If using trial values, m_{1} must be at least $70 \times m_{2}$ to give $\omega=3.5$ to 1 dp .

5	(d)	$\begin{aligned} & v=r \omega=0.6 \sqrt{\frac{49 \times 2.5+98 \times 2.8}{4 \times 2.5}} \\ & \text { Final energy }=2.5 \times g \times 1 \\ & \text { Initial } \mathrm{KE}=\frac{1}{2} \times 2.5 \times 0.6^{2} \times \frac{49 \times 2.5+98 \times 2.8}{4 \times 2.5} \\ & \text { Initial } \mathrm{PE}=2.5 \times g \times 1.2+2.8 \times g \times 0.4 \\ & \text { Energy loss }=17.8605+40.376-24.5=33.7365 \end{aligned}$	M1 B1 M1 M1 A1	$\begin{gathered} 1.2 \\ 1.1 \\ 1.1 \\ 1.1 \\ 3.2 \mathrm{a} \end{gathered}$	Use of $v=r \omega$ with values for m_{1} and m_{2} (Assuming zero PE level at 2 m below A; other values possible) Do not allow use of $\omega=3.5$ oe with different zero PE level awrt 33.7	$\begin{aligned} & \left(v=3.78, v^{2}=14.2884\right) \\ & \mathrm{NB} \omega=6.3 \\ & (24.5) \\ & (17.8605) \\ & (40.376) \end{aligned}$
		Alternate method $\begin{aligned} & v=r \omega=0.6 \sqrt{\frac{49 \times 2.5+98 \times 2.8}{4 \times 2.5}} \\ & \text { Initial } \mathrm{KE}=\frac{1}{2} \times 2.5 \times 0.6^{2} \times \frac{49 \times 2.5+98 \times 2.8}{4 \times 2.5} \\ & \Delta P E \text { for } m_{1}= \pm 2.5 \times 9.8 \times(0.8-1) \\ & \Delta P E \text { for } m_{2}= \pm 2.8 \times 9.8(1.6-2) \end{aligned}$ Energy loss $=17.8605+4.9+10.976$	M1 M1 M1 M1 A1		Use of $v=r \omega$ with values for m_{1} and m_{2} $\begin{aligned} & \text { Or }-\triangle P E \\ & =2.5 \times 9.8 \times 0.2+2.8 \times 9.8 \times 0.4 \end{aligned}$ awrt 33.7	$\begin{aligned} & \left(v=3.78, v^{2}=14.2884\right) \\ & \mathrm{NB} \omega=6.3 \\ & (17.8605) \\ & \\ & (\pm 4.9) \\ & (\pm 10.976) \\ & \\ & (\pm 15.876) \\ & \text { Or } 15.876+17.8605 \end{aligned}$
			[5]			

6	(a)	$\begin{aligned} & 1^{\text {st }} \text { collision for } A \& B: 2 m u=2 m v_{A}+m v_{B} \\ & \frac{1}{2}=\frac{v_{B}-v_{A}}{u} \\ & v_{A}=\frac{1}{2} u \\ & 2^{\text {nd }} \text { collision for } A \& B: 2 m \times \frac{1}{2} u+m U_{B}=2 m V_{A}+m V_{B} \\ & \frac{1}{2}=\frac{V_{B}-V_{A}}{\frac{1}{2} u-U_{B}} \\ & u+U_{B}=2 V_{A}+V_{B} \text { and } u-2 U_{B}=4 V_{B}-4 V_{A} \\ & \Rightarrow 3 u=6 V_{B} \Rightarrow V_{B}=\frac{1}{2} u \end{aligned}$	M1 M1 A1 M1 M1 A1 [6]	3.1b 1.1a 1.1 1.1 1.1 2.1	Conservation of momentum Restitution Conservation of momentum Restitution AG Intermediate work towards cancellation must be seen	May see $-U_{B}$ or $\pm e u$ Do not allow assumed value of U_{B} e.g. $\frac{1}{2} u$ or u. Do not allow assumed value of U_{B} e.g. $\frac{1}{2} u$ or u. SC1 if assumed value for V_{B} has been used (giving M0M0), provided $\left\|U_{B}\right\| \leq$ u, direction of travel is towards A and equations are otherwise correct.
6	(b)	$v_{B}=u$ Collision for B \& wall: $e= \pm \frac{U_{B}}{u}$ or $U_{B}= \pm e u$ $\frac{\frac{4}{5} d}{\frac{1}{2} u}=\frac{d}{u}+\frac{\frac{1}{5} d}{e u}$ $\frac{3}{5}=\frac{1}{5 e}$ So coefficient of restitution between B and wall is $\frac{1}{3}$	B1 M1 M1 M1 A1 [5]	1.1 3.1b 3.1b 1.1 3.2a	Restitution May see $V_{2 B}$ or similar instead of $\pm e u$ with use of restitution at the end. Seeing that A travels $\frac{4}{5} d$ at $\frac{1}{2} u$ in the same time as B travels d at u and $\frac{1}{5} d$ at $e u$ Correctly cancelling d and u and simplifying their 3 term equation including e in the denominator	Award if seen in (a). Award if seen in (a) Do not allow assumed rebound speed

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

